氏名

役職

専門分野

瓜田 幸幾

准教授

表面化学、ナノ材料科学

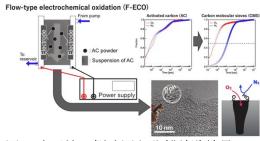
1. 主な研究テーマ

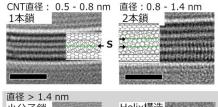
① 電気化学的手法による希少資源回収に関する研究

持続可能な社会を構築するためには、エネルギー資源の確保・カーボンニュートラルの実現が世界的な課題であり、各国で環境重視への転換着手が始まっており、希少資源の安定確保が益々重要になります。そこで、海水の淡水化プロセスでは以前より用いられている手法の一つである電気化学的手法による脱塩処理技術(CDI)を応用し、廃 LIB やプロダクションスクラップからの希少資源(Li等)分離回収の研究を開始しています。Li イオンに対しては、分離率90%の達成を目指しているところです。

② 空気分離・CO₂回収に向けた材料設計(図1)

燃焼炉におけるエネルギー効率の向上には、酸素負荷空気の利用が有効です。空気中から酸素と窒素を分離する材料に分子ふるい炭素 (CMS) があります。CMS において、細孔入口のバリア層が過度に厚いと酸素分子の透過速度が遅くなり、空気分離能が低下する場合があります。そこで、活性炭の電気化学的酸化処理により含酸素官能基を細孔入口近傍に賦与し、極薄のバリア層を形成させることで空気分離を試みています。




図1 本手法の概略図と分離試験結果

【成果】 Enhanced O_2 selectivity of carbon molecular sieves by electrochemical oxidation for air separation, *Carbon*, **235**, 120088 (2025) [open access].

③ 蓄電デバイス材料の局所構造解析

多孔性カーボン材料は、電気伝導性・ナノ空間・高比表面積を有することから二次電池や電気二重層キャパシタ (EDLC) の電極材料として用いられます。リチウムイオン二次電池などの電解質イオンと電極間の化学反応を伴う系において、高容量化が期待できる活物質(SnO_2 や S等)は、電解質イオンとの反応により大きな体積変化を起こすため、Li イオンとの反応空間をカーボン電極のナノ空間に制御することで、サイクル安定性の向上が期待できます。「どの様なナノ空間が活物質と電解質イオンとの反応に有効なのか?」という問いに対して、放電過程にある電極材料(硫黄を細孔に担持したカーボンナノチューブ、S@CNT)を透過型電子顕微鏡(TEM)によって観察することで、充放電反応に有効な細孔サイズを明らかにしています(図 2)。

また、EDLCの容量発現対して、多孔性カーボン電極のガス吸着法による細孔構造の定量評価、TEMによる細孔形状の同定から最適な細孔径・形状を見出しています。

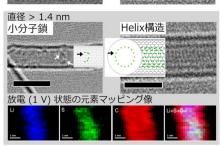


図2 [上段] CNT の直径に依存した 硫黄の TEM 像とその構造モデル (緑:硫黄,スケールバー:2 nm) [下段] Li 塩電解液中の放電時の態 の元素マッピング像

2. キーワード

多孔性カーボン、空気分離、資源回収、電子顕微鏡、吸着

3. 特色・研究成果・今後の展望等(社会実装への展望・企業へのメッセージもあれば)

廃棄物には多くの資源が眠っています。資源循環社会、脱炭素化社会に向けた基礎研究を行っています。ただ、出口は企業の力が絶大です。産学官の連携で日本を元気にしたい。

researchmap: https://researchmap.jp/read0150871

研究室 HP: https://www.cms.nagasaki-u.ac.jp/lab/bukka/A/top.html