Name	Job Title	Area of Expertise
ONODERA Gen	Associate Professor	Organometallic Chemistry, Organic
		Synthesis

1. Main Research Topics

One of our research topics is the development of a novel organic synthesis method using a transition-metal catalyst bearing a Lewis acidic moiety. We designed and synthesized phosphine compounds bearing a Lewis acidic borane moiety. We have attempted to develop highly active transition-metal catalysts in which Lewis acid and transition-metal moieties can work in concert.

Coordinating Phosphine Moiety
$$\longrightarrow$$
 R₂P BR'₂ Lewis Acidic Borane Moiety

Transition-Metal \longrightarrow M

① Carbon-Oxygen Bond Activation of Allylic and Benzylic Alcohols

The substitution reactions of allylic and benzylic alcohols with nucleophiles (HNu) proceeded smoothly via carbon–oxygen bond cleavage using a palladium catalyst bearing a borane moiety.

R" OH + HNu
$$\frac{\text{cat. [Pd]} / R_2 P}{\text{R}}$$
 BR'₂ R" Nu + H₂O

References: Org. Lett. **2017**, 19, 6148; Adv. Synth. Catal. **2018**, 360, 1954; Tetrahedron Lett. **2020**, 61, 152537.

② Aromatic Carbon-Hydrogen Bond Activation

We reported that the aromatic carbon-hydrogen bond was cleaved, and hydrogen was substituted by a silyl group using an iridium catalyst bearing a borane moiety.

Reference: Adv. Synth. Catal. 2022, 364, 1223.

3 Dual Activation of Malonate Moiety and Alkyne Moiety

The novel cycloisomerization of a malonate derivative proceeded using a gold complex bearing a borane moiety.

RO OR
$$\frac{\text{cat. [Au]}}{\text{Ro}}$$
 $\frac{\text{Ro}}{\text{Ro}}$ RO OR

Reference: Adv. Synth. Catal. doi.org/10.1002/adsc.70064.

2. Keywords

Transition-metal catalyst, Lewis acid, Organometallic chemistry, Organic synthesis

3. Remarks and Websites

Other research topics include the development of a novel molecular probe (in collaboration with the school of medicine) and novel organic synthesis using an external electric field.

researchmap: https://researchmap.jp/genonodera

Laboratory: https://www.cms.nagasaki-u.ac.jp/lab/yuuki/index.html